Сообщение

Руководство по определению грузоподъемности железобетонных продлетных строений железнодорожных мостов (часть 3)

Содержание материала

6. УЧЕТ ВЛИЯНИЯ ДЕФЕКТОВ ПРОЛЕТНОГО СТРОЕНИЯ

 

Общие указания

6.1. При оценке грузоподъемности плиты балластного корыта и главных балок должно быть учтено влияние дефектов и повреждений, выявленных при обследовании пролетного строения (см. раздел 8).

Учет дефектов и повреждений в расчетах на прочность выполняют по указаниям настоящего раздела. Методика учета дефектов в расчетах на выносливость приведена в приложении 10.

Учет ослабления арматуры коррозией и выключенных из работы стержней.

6.2. Учет ослабления арматуры коррозией и выключенных из работы стержней производится путем введения в расчетные формулы фактической площади сечения стержней рабочей арматуры (см. разд. 4) или относительного изменения площади сечения арматуры i (см. раздел 5), определенных при обследовании пролетного строения.

Относительное изменение площади арматуры определяют как отношение площади поперечного сечения продольной рабочей арматуры с учетом ослабления ее коррозией и выключенных из работы стержней Asi к площади той же арматуры без учета ее ослабления As:

clip_image002 (6.1)

где n – число стержней рабочей арматуры в элементе; fa – площадь сечения одного стержня, не поврежденного коррозией; n1, n2 – число стержней, соответственно поврежденных коррозией и выключенных из работы; fi – площадь ослабления сечения i-го стержня коррозией.

6.3. При наличии в пролетном строении участков с продольной рабочей арматурой, потерявшей сцепление с бетоном, расчету подлежит сечение на данном участке без учета стержней, выключенных из работы. При этом расчет производится по наибольшему изгибающему моменту в пределах данного участка.


Учет трещин в сжатой зоне.

6.4. При наличии трещин, заходящих в сжатую зону бетона, необходимо установить высоту сжатой зоны clip_image004 по эпюре раскрытия трещины при испытании. Далее следует определить расчетный предельный изгибающий момент по расчету на прочность M по формулам раздела 4.

Если момент от испытательной нагрузки, при котором измеряли величину clip_image004[1],

clip_image006 (6.2)

то дальнейшие расчеты ведут исходя из высоты сжатой зоны clip_image008.

Если clip_image010, то стабильную высоту сжатой зоны определяют по формуле:

clip_image012 (6.3)

где clip_image014- момент от испытательной нагрузки в рассчитываемом сечении; M – предельный изгибающий момент.

Для учета влияния трещины в сжатой зоне на прочность по изгибающему моменту следует установить расчетную высоту сжатой зоны по формулам п. 4.7.

Если xф>x, то предельный изгибающий момент определяют в соответствии с указаниями п. 4.7.

Если xф<x, то предельный изгибающий момент с учетом влияния трещин определяют по формулам п. 4.7 с заменой x на xф.


Учет раковин и сколов бетона

6.5. Расчет на прочность по изгибающему моменту сечения, в котором имеются раковины или сколы в сжатой зоне бетона, производят в следующем порядке:

а) прямоугольное сечение.

Высота сжатой зоны

clip_image016; (6.4)

предельный изгибающий момент

clip_image018 (6.5)

В формулах (6.4), (6.5):

M – предельный изгибающий момент, определяемый по формулам пп. 4.4, 4.7 с заменой x на x0;

A0 – площадь ослабления поперечного сечения раковиной или сколом в сжатой зоне бетона, высота которой определена предварительно без учета повреждения;

a0 – расстояние от растянутой рабочей арматуры до центра тяжести площади ослабления бетона;

б) тавровое сечение (при расположении нейтральной оси в пределах ребра).

Высота сжатой зоны бетона

clip_image020 (6.6)

Предельный изгибающий момент определяют по формуле (6.5).


7. КЛАССИФИКАЦИЯ ПОДВИЖНОГО СОСТАВА. ОПРЕДЕЛЕНИЕ УСЛОВИЙ ПРОПУСКА ПОЕЗДНЫХ НАГРУЗОК.

 

7.1. Для главных балок результаты классификации обращающихся и перспективных локомотивов, вагонов, транспортеров и железнодорожных кранов приведены в Указаниях по определению условий пропуска поездов по железнодорожным мостам (М., Транспорт, 1983). При этом классы паровозной нагрузки умножают на поправочный коэффициент, равный коэффициенту clip_image022, который вычисляют по формуле (3.2); классы консольных кранов в рабочем положении умножают на поправочный коэффициент 1,05; для остальных нагрузок от подвижного состава поправочные коэффициенты не вводят (приведенные в разделе 1 Указаний поправочные коэффициенты не учитывают).

clip_image024

Рис. 7.1. Зависимость длины распределения временной нагрузки clip_image026 от минимального расстояния между осями ak в схеме временной нагрузки.

7.2. Для плиты балластного корыта класс нагрузки определяют по формуле:

clip_image028, (7.1)

где k0 – эквивалентная нагрузка от классифицируемого подвижного состава;

clip_image030 (7.2)

здесь P – наибольшее давление на ось классифицируемого подвижного состава; ck – длина распределения временной нагрузки в направлении вдоль оси моста, принимаемая по графику на рис. 7.1 в зависимости от минимального расстояния между осями в схеме временной нагрузки ak и толщины балластного слоя под шпалой hb (при ak>2,2 м величину ck принимают, как при ck=2,2 м; для промежуточных значений hb величину ck вычисляют по интерполяции); clip_image032 - динамический коэффициент для классификации подвижного состава, принимаемый согласно п. 3.4; kн – эталонная нагрузка по схеме H1, определяемая согласно указаниям приложения 1; clip_image034 - динамический коэффициент для эталонной нагрузки по схеме H1, принимаемый согласно п. 3.4.

Значения эквивалентных нагрузок и классов подвижного состава для расчета плиты балластного корыта приведены в приложении 11.


7.3. Для определения возможности пропуска нагрузки по пролетному строению следует сопоставить минимальный класс каждого его элемента с соответствующим наибольшим классом K0 нагрузки, обращающейся или намеченной к обращению на данном мосту. Максимальные классы подвижного состава, обращающегося в настоящее время на сети железных дорог, определяют:

для главных балок – по графикам на рис. 7.2 с учетом длины загружения clip_image036 и коэффициента clip_image038, характеризующего положение вершины линии влияния;

для плиты балластного корыта – по табл. 7.1.

7.4. При решении вопроса о пропуске транспортеров, консольных кранов и других эпизодических нагрузок их классы сравнивают только с классом элементов пролетного строения по прочности.

7.5. Если классы элементов пролетного строения по прочности и выносливости равны или больше соответствующих классов нагрузки, то эта нагрузка допускается к обращению без всяких ограничений.

clip_image040

Рис. 7.2. Зависимость класса нагрузки K0 от длины загружения clip_image036[1] и положения clip_image038[1] вершины линии влияния

Таблица 7.1. Максимальные классы K0 подвижного состава для плиты балластного корыта.

Подвижной состав

Максимальные классы K0 при толщине балластного слоя под шпалами hb, м

0,25

0,50

0,75

1,00

Локомотивы с вагонами

7,7 (8,5)

6,9 (7,6)

6,4 (7,1)

6,5 (7,2)

Транспортеры

7,7 (8,5)

7,8 (8,6)

8,2 (9,0)

8,4 (9,3)

Примечания 1. В скобках даны значения K0 для пути на песчаном балласте. 2. Для промежуточных значений hb значения K0 определяются по интерполяции.


Если классы элементов пролетного строения по прочности меньше соответствующего класса нагрузки K0, то следует проверить возможность пропуска этой нагрузки с ограничением скорости.

clip_image044

Рис. 7.3. График для расчета допустимой скорости движения поездной нагрузки.

Допустимую скорость движения нагрузки устанавливают по графику на рис. 7.3. Для этого на график наносят точку, отвечающую вычисленному значению K/K0 и динамической добавке clip_image046. Динамическую добавку clip_image046[1] определяют:

Для главной балки по формуле

clip_image049 (7.3)

где hb – толщина слоя балласта под шпалой по оси моста, м (при hb<0,25 м и hb<1,0 м принимают соответственно hb=0,25 м и hb=1,0 м); l – расчетный пролет, м;

для плиты балластного корыта – по графику на рис. 3.1.

За допустимую скорость при пропуске поездной нагрузки по мосту принимают скорость, указанную на ближайшей нижней кривой графика. В случае расположения точки ниже самой нижней кривой графика данная нагрузка должна быть запрещена к пропуску по мосту.

7.6. Если классы элементов пролетного строения по прочности выше класса нагрузки, а классы элементов пролетного строения по выносливости меньше соответствующего класса нагрузки, то ограничение движения скорости поездов не вводят. При этом следует установить наблюдение за развитием трещин и изменением прочностных характеристик бетона, предусмотреть в плановом порядке мероприятия по ремонту или замене пролетного строения.

7.7. Решение о замене пролетного строения принимают на основании анализа данных о грузоподъемности по прочности и выносливости, физическом состоянии и результатах испытания сооружения с учетом возможности и технико-экономической целесообразности его ремонта и усиления. Первоочередными мероприятиями по повышению грузоподъемности (классов) железобетонных пролетных строений могут быть:

устранение смещения оси пути относительно оси пролетного строения;

уменьшение толщины балластного слоя до нормативной за счет срезки балласта (на мосту и подходах) или подъемки пролетного строения.


8. ОБСЛЕДОВАНИЕ И ИСПЫТАНИЕ ПРОЛЕТНЫХ СТРОЕНИЙ.

 

Общие положения.

8.1. Цель обследования состоит в получении необходимых данных для установления физического состояния и определения грузоподъемности пролетных строений. В задачи обследовании входят также анализ условий работы конструкций, выявление возможных причин дефектов и оценка ремонтопригодности сооружения.

8.2. Обследования по нижеизложенной методике производят мостостанции служб пути дорог и ЦП МПС, а также другие специализированные организации.

Выявление дефектов конструкции

8.4. При обследовании должны быть выявлены все дефекты, и в первую очередь те, которые снижают грузоподъемность и долговечность пролетных строений; коррозия рабочей арматуры; потеря сцепления с бетоном рабочей арматуры, в том числе выключение ее из работы; трещины в бетоне несу­щих элементов; повреждение гидроизоляции пролетного строения; наруше­ние нормальных условий работы системы водоотвода из балластных корыт; неправильность в расположении и недостаточная подвижность опорных час­тей; отклонения от нормативов в состоянии мостового полотна; другие пов­реждения, способные снизить грузоподъемность и долговечность пролетного
строения.

Все дефекты и другие данные обследования, характеризующие физичес­кое состояние пролетного строения, следует фиксировать и наносить на специальный планшет (схема пролетного строения, выполненная в определен­ном масштабе).

8.5. При обследовании следует иметь в виду, что коррозия арматуры возникает и развивается в местах отсутствия защитного слоя или недостаточной его толщины, на участках с нарушенной рыхлой структурой бетона, а также в результате карбонизации бетона или проникновения влаги через трещины. Коррозия арматуры может быть обнаружена визуально в местах обнажения стержней (пучков), а также по ржавчине, выступившей на по­верхности бетона, по отслоению бетона или его пучению, по трещинам в
защитном слое, направленным вдоль арматуры. Отслоение защитного слоя может быть установлено и путем его простукивания. Корродированная рабо­чая арматура подлежит замеру для установления фактической площади ее сечения. Выбранные для этой цели стержни очищают от бетона и продуктов коррозии. Диаметры стержней измеряют при помощи штангенциркуля или другого измерительного инструмента. На схеме пролетного строения должны быть отмечены стержни, пораженные коррозией, и указан их фактический
диаметр.

8.6. При обследовании следует иметь в виду, что потеря сцепления с бетоном рабочей арматуры может возникнуть в местах раковин, отколов, а также отслоений защитного слоя. К потерявшим сцепление относятся арма­турные стержни (пучки), не имеющие сцепления с бетоном по всему пери­метру или на большей его части.

К выключенной из работы арматуре относятся стержни, потерявшие сцепление с бетоном и имеющие провисание, а также стержни (пучки), ра­зорванные в процессе эксплуатации.

На схемах должно быть указано количество и положение стержней, выключенных из работы, а также длины участков потери сцепления и поло­жение их по длине пролетного строения.


8.7.При обследовании необходимо на месте устанавливать вид трещин (силовые или температурно-усадочные) и оценивать степень их опасности
для пролетного строения.

Примечания. 1. В пролетных строениях, спроектированных по нор­мам до 1931г. включительно, обнаруживаемые трещины в бетоне имеют преимущественно температурно-усадочное происхождение.

Для пролетных строений с ненапрягаемой арматурой более поздней по­стройки (включая современные конструкции) характерны трещины в ребрах балок силового происхождения:

вертикальные - в средней части пролета;

наклонные - в приопорных участках.

При обследовании следует фиксировать трещины, заходящие в сжатую зону бетона ребра, независимо от их раскрытия.

2. Для пролетных строений с напрягаемой арматурой возможны различ­ные сочетания трещин, наиболее распространенными из которых являются: вертикальные трещины в плите и верхней части ребра; наклонные трещины в приопорных участках ребер; продольные трещины, направленные вдоль пучков напрягаемой арматуры.

На схеме пролетного строения следует указать положение и раскрытие всех обнаруженных на поверхности бетона трещин. Раскрытие трещин измеряют в местах их наибольшей ширины на бетоне конструкции. Если поверхности бетона пролетного строения оштукатурены, то в местах измерения раскрытия трещин слой раствора следует удалить. Для измерения могут быть использованы ручные микроскопы или протарированные лупы с ценой деления не более 0,1 мм.


Определение смещения оси пути.

8.8. Смещение оси пути относительно оси пролетного строения следует определять на обоих концах пролетного строения. Для этой цели могут быть использованы мерные рейки, рекомендуемые для снятия размеров при составлении опалубочных чертежей пролетных строений (см. приложение 14).

В этом случае смещение оси пути

clip_image051 (8.1)

где clip_image053 - расстояние между внутренней гранью головки рельса и отвесом; clip_image055 - расстояние от оси пролетного строения до отвеса; за ось пролетного строения принимается середина расстояния между наружными гранями крайних ребер (плиты); clip_image057 - ширина колеи по внутренним граням головок рельсов.

При отсутствии указанных реек следует с помощью отвеса и мерной линейки перенести на шпалы положение наружных граней крайних ребер; середина расстояния между ними принимается за точку оси пролетного строения. Измерения должны производиться с точностью до 5 мм.

Примечания. 1. На однопролетных мостах, расположенных в плане на прямолинейных участках пути, возможен указанный способ съемки в несколько измененном виде. Изменение заключается в том, что съемка ведется на мостовом полотне без опускания отвесов до уровня низа главных балок. Для этого используют материалы съемки поперечных сечений пролетных строений. Зная размеры всех элементов, от наружной грани борта корыта на мерной рейке откладывают расстояние, соответствующее положению оси пролетного строения. Далее при помощи отвеса на той же рейке фиксируют положение оси пути.

2. На многопролетных сооружениях, а также сооружениях, расположенных на кривых, рекомендуется выполнять съемку плана моста с использованием теодолита, материалы которой дают представление и о положение фактической (мост на прямом участке пути) или условной (мост на кривой) оси моста фиксируют при помощи теодолита.


Определение прочности бетона.

8.9. При обследовании пролетных строений прочность бетона рекомендуется определять с помощью склеромера Шмидта (см. приложение 16).

Для плитных пролетных строениц участки испытания бетона следует выбирать в середине пролета и вблизи опорных сечений, в верхней зоне плиты в месте сопряжения с тротуарными консолями. Для ребристых пролетных строений участки испытаний бетона намечают в середине пролета на нижней поверхности плиты балластного корыта и на ребрах в верхней части, а также в приопорных сечениях на ребрах (плитах) в верхней их части.

Намеченные участки наносят на схему пролетного строения. Участки испытаний рекомендуется назначить размером примерно 200´200 мм на элементах конструкции толщиной не менее 100 мм. Граница участка испытания должна быть не ближе 50 мм от края конструкции. Удар по бетону следует наносить перпендикулярно к испытываемой поверхности и место удара должно быть удалено от арматурного стержня не менее чем на 50 мм. Размер отскока определяют с точностью до 0,5 деления шкалы прибора. Число испытаний на участке должно быть менее 10, а расстояние между отпечатками на бетоне – не менее 30 мм.

Для каждого участка испытания определяют среднее значение косвенной характеристики прочности бетона (отскока ударной части прибора) по формуле.

clip_image059 (8.2)

где Ri – единичный отскок; n – число ударов на участке.

При вычислении средних значений отскока обработку результатов испытаний следует проводить по ГОСТ 22690.0-77.

Прочность бетона на сжатие на участке конструкции определяют по косвенной характеристике clip_image061, пользуясь градуировочной зависимостью «размер отскока – прочность» (см. приложение 16) в зависимости от угла наклона оси прибора к горизонту. Форма журнала для определения прочности бетона приведена в приложении 17.


Испытание пролетных строений.

8.10. Испытания проводят в следующих участках:

а) при недостаточном классе пролетного строения по прочности, определенном приближенными способами;

б) при наличии дефектов, учет влияния которых на грузоподъемность затруднителен;

в) при наличии дефектов, для определения влияния которых на грузоподъемность требуется измерить раскрытие трещин под нагрузкой (см. раздел 6 и приложение 10);

г) при необходимости уточнения доли временной нагрузки, приходящейся на элементы многосекционных пролетных строений.

Испытания проводят под обращающейся (желательно наиболее тяжелой) нагрузкой. Испытания могут быть статическими, с остановкой испытательной нагрузки на пролетном строении, или динамическими – под проходящими поездами.

В случае «а» измеряют относительные деформации арматуры и определяют напряжения арматуры в сечениях, по которым получены низкие классы.

В случае «в» проводят измерения раскрытия под статической испытательной нагрузкой наиболее крупных наклонных трещин, а также вертикальных трещин, распространяющихся в сжатую зону бетона. Измерения производят через 10-30 см по всей длине трещины, чтобы получить эпюру раскрытия трещин и определить границу сжатой зоны. Раскрытие трещин измеряют с помощью индикаторов с ценой деления 0,001 мм. Индикаторы ставят на специальных стальных марках, наклеиваемых на бетон (см. приложение 18). Марки прикрепляют к бетону по обе стороны от трещины, возможно ближе к ней. Раскрытие трещин получается как разность отсчетов по индикаторам до загружения и под нагрузкой. Перед испытанием должно быть замерено с точностью до 0,01 мм раскрытие трещин под постоянной нагрузкой. Измерение рекомендуется выполнять с помощью микроскопа или лупы со шкалой.

В случае «г» измеряют прогибы балок в середине пролета и осадку опорных точек. Измерения проводят с точностью не менее 0,1 мм. Доля временной нагрузки, приходящейся на одну балку,

clip_image063 (8.3)

где f – прогиб рассматриваемой балки, определяемый как разность между измеренным прогибом и осадкой опорных точек; I – момент инерции всего бетонного поперечного сечения рассматриваемой балки без учета арматуры; fi – прогиб i- ой балки; Ii – момент инерции всего бетонного поперечного сечения i-ой балки без учета арматуры; m – число балок.

В случаях «а» и «б» испытания выполняет специализированная организация.